

Available online at www.sciencedirect.com

Journal of the European Ceramic Society 26 (2006) 2093-2096

www.elsevier.com/locate/jeurceramsoc

Improvement of the dielectric properties of rutile-doped Al₂O₃ ceramics by annealing treatment

Yasuharu Miyauchi^{a,*}, Yoshihiro Ohishi^b, Sinya Miyake^b, Hitoshi Ohsato^b

^a Materials R&D Center, TDK Co., 570-2, Matsugashita, Minamihatori, Narita-shi, Chiba 286-8588, Japan ^b Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan

Available online 22 November 2005

Abstract

The microwave dielectric properties of alumina (Al₂O₃) ceramics were studied. The objectives were to improve the large negative temperature coefficient of the resonant frequency (τ_f) of Al₂O₃ ceramics and to obtain a relatively large quality factor (*Qf*) through the addition of rutile (TiO₂), which has a large positive τ_f , and an annealing treatment. A near-zero τ_f (+1.5 ppm/°C), excellent *Qf* (148,000 GHz) and ε_r (12.4) were obtained in 0.9 Al₂O₃–0.1 TiO₂ ceramics sintered at 1350 °C for 2 h, followed by annealing at 1100 °C for 12 h in air. © 2005 Elsevier Ltd. All rights reserved.

Keywords: Electrical properties; Al₂O₃; TiO₂; Insulators

1. Introduction

Dielectric materials for microwave applications have been used in mobile phones, wireless local area networks (LAN), and intelligent transport systems (ITS). Recently, they are planed to be applied in ultrahigh speed wireless LAN in millimeter wave, because they can reduce the resource of electromagnetic wave. Dielectric ceramics for millimeter-wave applications are also planned for use in ITS, including a car anti-collision system.¹ In order to meet this application, they must have a high quality factor (Q), to significantly reduce dielectric loss ($Q = 1/\tan \delta$), and a low dielectric constant (ε_r), to shorten the time for electronic signal transition. Moreover, zero τ_f is required to provide stability at various service temperatures. Q is generally evaluated as Qf(f: frequency) because Qf is almost constant even with increasing frequency.² Al₂O₃, MgTiO₃ and Mg₂SiO₄ ceramics, which are high-Qf and low- ε_r materials, are both candidates for millimeter-wave applications.^{1,3} However, with large negative $\tau_{\rm f}$ values, significant improvement is still needed.⁴ This obstacle might be overcome by two phases with different $\tau_{\rm f}$ values.⁵ For example, the combination of MgTiO₃ ceramics, which have a negative τ_f , and CaTiO₃ ceramics, which have a positive τ_f , could be selected to control $\tau_{\rm f}$ toward zero.³

Al₂O₃ ceramics have an ultrahigh Qf of 360,000 GHz, low ε_r of 9.8, and a negative large τ_f of -60 ppm/°C,^{6,7} while TiO₂

0955-2219/\$ - see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.jeurceramsoc.2005.09.063 ceramics have a high Qf of 48,000 GHz, ε_r of 100, and a positive large τ_f of +450 ppm/°C.⁸ Tzou et al. Reported that Al₂O₃–TiO₂ ceramics containing glass additives achieved a $\tau_f \sim 0$ ppm/°C by adjusting both sintering temperature and TiO₂ content.⁹ However, dense ceramics were not obtained at a low sintering temperature (1300 °C). They also found that the formation of Al₂TiO₅ caused a decrease in Qf and τ_f when the sample was sintered at high temperature. Fig. 1 shows the diagram for Al₂O₃–TiO₂; this diagram indicates the appearance of Al₂TiO₅ at above 1200 °C.

In the previous letter, it was simply described that Al₂TiO₅ could be decomposed by using a post-annealing treatment, creating a ceramic with a near-zero τ_f (τ_f = +1.5 ppm/°C) and microwave dielectric properties (Qf = 117,000 GHz, ε_r = 12.4). These characteristics were obtained using a 0.9 Al₂O₃-0.1 TiO₂ ceramic which had been sintered at 1350 °C for 2 h, followed by an anneal at 1000 °C for 2 h in air.¹⁰ In this paper, the previous letter is revised with additional data, and the effects of annealing hold time are studied in more detail.

2. Experimental procedures

Al₂O₃ (TM-DAR, 99.99% purity, Taimei Chemical Co. Ltd., Japan) and TiO₂ (99.9% purity, Ishihara Sangyo Ltd., Japan) powders were used as raw materials for synthesis of Al₂O₃–TiO₂ ceramics. Utilizing the MICROTRAC the average particle size of Al₂O₃ was 0.17 μ m, and TiO₂ was 0.24 μ m. The starting materials were mixed, according to the composition 0.9 Al₂O₃–0.1 TiO₂. The mixed powders were ball-milled in a

^{*} Corresponding author.

Fig. 1. Phase diagram of Al₂O₃-TiO₂ (after Ref. [12]).

polyethylene bottle with Al_2O_3 balls and ethanol for 24 h. Pellets with a diameter of 12 mm were formed by uni-axial pressure of 98 MPa after the powders were dried and granulated. The pellets were sintered at temperatures from 1300 to 1550 °C for 2 h, followed by annealing at 900, 1000 and 1100 °C in air.

The crystalline phase of sintered pellets was investigated by X-ray powder diffraction (XRPD). The apparent density (ρ) was measured by the Archimedes' method. The microstructure was analyzed by transmission electron microscopy (TEM) equipped with energy dispersive X-ray spectroscopy (EDS). The microwave dielectric properties (Qf, ε_r , and τ_f) were measured by a network analyzer (Agilent 8720ES and HP 8757C) using a pair of parallel conducting Ag and Cu plates in the TE₀₁₁ mode of modified Hakki and Coleman's resonator method. τ_f was estimated by a comparison of the resonant frequencies measured at 20 and 80 °C.

3. Results and discussion

0.9 Al₂O₃–0.1 TiO₂ compositions were designed to be τ_f nearly 0 ppm/°C based on the volume ratio of Al₂O₃ and TiO₂, considering the τ_f of Al₂O₃ and TiO₂.

Fig. 2. XRPD patterns of 0.9 Al₂O₃–0.1 TiO₂ ceramics sintered at (a) 1350 °C for 2 h and post annealed at (b) 900 °C; (c) 1000 °C and (d) 1100 °C for 2 h.

Fig. 2 shows XRPD patterns of the samples sintered at 1350 °C for 2 h and post-annealed at 900, 1000 and 1100 °C for 2 h. Al₂TiO₅ phase in the specimen sintered at 1350 °C was confirmed as a secondary phase in main Al₂O₃ phase. The Al₂TiO₅ phase disappeared by annealing treatment at 1000 and 1100 °C due to the phase relation as shown previously in Fig. 1. At 900 °C of annealing temperature, the Al₂TiO₅ phase does not decompose due to too lower temperature for the decomposition. Fig. 3 shows the TEM images of the samples sintered and post annealed at 1000 °C for 2 h. In the as sintered sample, Al₂TiO₅ grains with 0.2–0.5 µm in particle size were deposited in the grain boundary of Al₂O₃, and the particle size of Al₂O₃ increased to $1-3 \mu m$. It is considered that Al₂TiO₅ were formed by Al diffused into TiO₂, because the particle size of Al_2O_3 (0.17 µm) as raw materials, is smaller than that of TiO₂ (0.24 μ m). In the post annealed sample, Al2TiO5 decomposed to TiO2 and Al2O3 with 0.1-0.4 µm in particle sizes by the annealing treatment. They are embedded among large size Al_2O_3 grains with 1–3 μ m.

Table 1 shows the τ_f , Qf and ε_r of the specimens sintered at 1350 °C for 2 h and post annealed at 900, 1000 and 1100 °C for 2 h. The τ_f values were improved from -36.2 to +1-2 ppm/°C

500nm

 Table 1

 Microwave dielectric properties of as-sintered and post-annealed specimens

Annealing temperature (°C)	$\tau_{\rm f}~(\text{ppm/}^\circ \text{C})$	Qf(GHz)	$\varepsilon_{\rm r}$
As sintered (non-annealing)	-36.2	142,000	11.6
900	-39.5	125,000	11.7
1000	+1.5	117,000	12.4
1100	+1.4	114,000	12.6

by annealing at 1000 and 1100 °C. This improvement of $\tau_{\rm f}$ is depend on the decomposition of Al₂TiO₅ with 79 ppm/°C¹¹ to Al₂O₃ and TiO₂ with 450 ppm/°C by the annealing treatment. This improvement was brought by the difference of $\tau_{\rm f}$ between Al₂TiO₅ and TiO₂. At 900 °C of annealing temperature, the $\tau_{\rm f}$ has not changed because of less decomposition of Al₂TiO₅ due to the lower temperature. The *Qf* decreased from 142,000 GHz to 114,000–117,000 GHz by the annealing treatment of 1000–1100 °C. This decreasing of *Qf* is recovered by the annealing hold time described later. Additionally, the $\varepsilon_{\rm r}$ of the sintered sample was 11.6, and those post annealed at 1000 and 1100 °C were 12.4–12.6, in regard of whether Al₂TiO₅ phase appeared or not.

Fig. 4 shows the τ_f and Qf of the specimens sintered at 1300, 1350, 1450 and 1550 °C and post annealed at 1000 °C for 2 h. Fig. 5 shows XRPD patterns of the as sintered samples. At 1300 °C of the sintering temperature there was no observed difference in the properties between the as sintered and postannealed samples. It should be noted that the Al₂TiO₅ phase was not confirmed in the as sintered specimen, and therefore the effect of the annealing treatment cannot be commented on. Additionally, the $\tau_{\rm f}$ tended to become increasingly negative by increasing the sintering temperature from 1350 to 1500 °C. In fact, there was an increase in the Al₂TiO₅ phase present as the temperature was increased. However, by the annealing treatment the $\tau_{\rm f}$ s were greatly improved to -7 to +1.5 ppm/°C; close to $0 \text{ ppm/}^{\circ}\text{C}$. Finally, the *Of* value decreased as the sintering temperature increased, which is thought to be attributed to the formation of the Al_2TiO_5 phase. Moreover, the *Qf* showed a decrease by the annealing treatment.

Fig. 4. (a) τ_f and (b) Qf of 0.9 Al₂O₃-0.1 TiO₂ ceramics sintered and post annealed at 1000 °C for 2 h as a function of sintering temperature.

Fig. 5. XRPD patterns of 0.9 Al₂O₃–0.1 TiO₂ ceramics sintered at (a) 1300; (b) 1350 and (c) 1550 $^{\circ}$ C for 2 h.

The annealing hold time at 1100 °C was investigated. Fig. 6 shows the Qf, ε_r and τ_f as a function of annealing time. The Qfdecreased from 142,000 to 114,000 GHz with a post annealing treatment of 2 h; it is thought that the Al₂TiO₅ to Al₂O₃ and TiO₂ decomposition reaction also occurs during this time and may serve to decrease the Qf while the reaction is taking place. However, when the sample was post annealed for longer than 6 h, the Qfs of as sintered and post annealed were the same. The effects of strain on this phenomenon were investigated using XRPD. The strain of Al₂O₃ phase in the post annealed sample for 2 h was 0.503×10^{-3} , while the sample post annealed for 12 h had a strain of 0.332×10^{-3} , showing a decrease in strain as the post annealing time was increased. The improvement in the Qf can therefore be attributed to a decrease in strain within the sample. The ε_r of the 2 h annealing sample as shown Fig. 6(b) was increased from 11.6 on the 0h sample to 12.5, in regard

Fig. 6. (a) Qf; (b) ε_r and (c) τ_f of 0.9 Al₂O₃–0.1 TiO₂ ceramics sintered at 1350 °C and post annealed at 1100 °C as a function of annealing hold temperature.

of whether Al₂TiO₅ phase appeared or not. Further, the ε_r is relatively constant, above 2 h, a dependence of ε_r on the hold time was not established. Also, the τ_f was improved to nearly zero by annealing. These phenomena can be explained by the absence of the Al₂TiO₅ phase as described before.

4. Conclusions

Rutile (TiO₂) added alumina (Al₂O₃) ceramics have been studied for the improvement of τ_f , the following conclusions are established:

- (1) Al₂TiO₅ phase generated by sintering at 1350 °C or more in the Al₂O₃-TiO₂ system is eliminated by the addition of an annealing treatment. By tailing the post annealing treatment, the $\tau_{\rm f}$ can be easily adjusted to 0 ppm/°C.
- (2) The *Qf* is improved by optimizing the hold time of the annealing treatment.

References

 Ohsato, H., Tunooka, T., Ando, M., Ohishi, Y., Miyauchi, Y. and Kakimoto, K., Millimeter-wave dielectric ceramics of alumina and forsterite with high quality factor and low dielectric constant. *J. Korean Ceram. Soc.*, 2003, 40, 350.

- Takekawa, T. and Kintaka, Y., Dielectric ceramics for microwave and millimeter-wave applications. *Mater. Integr.*, 2002, 15, 1 [in Japanese].
- Huang, C. L. and Weng, M. H., Improved high Q value of MgTiO₃-CaTiO₃ microwave dielectric ceramics at low sintering temperature. *Mater. Res. Bull.*, 2001, 36, 2741.
- Cockbain, A. G. and Harrop, P. J., The temperature coefficient of capacitance. J. Phys. D: Appl. Phys., 1968, 1, 1109.
- Kim, D. W., Park, B., Chung, J. H. and Hong, K. S., Mixture behavior and microwave dielectric properties in the low-fired TiO₂-CuO system. *Jpn. Appl. Phys.*, 2000, **39**, 2696.
- Alford, N. M. and Penn, S. J., Sintered alumina with low dielectric loss. J. Appl. Phys., 1996, 80, 5895.
- Penn, S. J., Alford, N. M., Templeton, A., Wang, X., Xu, M., Reece, M. and Schrapel, K., Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. *J. Am. Ceram. Soc.*, 1997, 80, 1885.
- Templeton, A., Wang, X., Penn, S. J. and Alford, N. M., Microwave dielectric loss of titanium oxide. J. Am. Ceram. Soc., 2000, 83, 95.
- Tzou, W. C., Chen, Y. C., Chang, S. L. and Yang, C. F., Microwave dielectric characteristics of glass-added (1-x)Al₂O₃-xTiO₂ ceramics. *Jpn. J. Appl. Phys.*, 2002, **41**, 7422.
- Ohishi, Y., Miyauchi, Y., Ohsato, H. and Kakimoto, K., Controlled temperature coefficient of resonant frequency of Al₂O₃–TiO₂ ceramics. *Jpn. J. Appl. Phys.*, 2004, **43**, 749.
- Haga, K., Ishii, T., Mashiyama, J. and Ikeda, T., Dielectric properties of two-phase mixture ceramics composed of rutile and compound. *Jpn. J. Appl. Phys.*, 1992, **31**, 3156.
- 12. Levin, E. M. and McMurdie, H. F., *Phase Diagrams for Ceramists, Vol* 3. American Ceramic Society, 1975, p. 135.